
Local-Oscillator  Limited  Frequency Stability for  Passive  Atomic 

Frequency Standards Using  Square-Wave  Frequency Modulation 

G. John Dick and Charles A. Greenhall 

Jet Propulsion  Laboratory (CIT) 

4800 Oak Grove Drive, MS 298-100 

Pasadena, CA  91109  USA 

November 17, 1999 

Abstract 

Atomic  frequency standards using  square-wave  frequency  modulation  effectively  interrogate 

the atomic  line by switching  back  and  forth  between  two  frequencies  with  equal  atomic  absorp- 

tion  values.  For  a  symmetric  absorption  line, the slope of the responses  will  also  be  equal. In 

the quasi-static  limit this would  seem to be an ideal  interrogation  process: the sign  reversal of 

frequency  slope  can  be  removed by detection  electronics to give an essentially  unvarying  sensitiv- 

ity to local-oscillator  frequency  variations.  Such  an  interrogation  would  seem to eliminate L.O. 

aliasing and so relieve  stringent  requirements on L.O. phase  noise.  Nevertheless,  sign  changes 

in the interrogation  and  detection  processes  mean that the sensitivity  is  actually  zero at some 

point  in the cycle. We derive  consequences of this fact by an analysis  in  terms of the sensitivity 

function g ( t ) .  For  white  phase  noise we derive  an  optimal  form  for g ( t ) ,  and show that  the 

aliased  noise  diverges  as g ( t )  approaches a constant. For  flicker  phase  noise we find  a  limiting 

form that could,  in  principle,  eliminate the aliasing  effect;  in  practice,  however, the improvement 

is  limited  by  a  slow  dependence  on  available  bandwidth.  Finally, we derive  optimized  forms  for 

any  phase  noise  spectrum. 

1 Introduction 

Limitations to  passive frequency standards performance  by aliased local-oscillator fluctuations have 

previously been  analyzed for both pulsed and continuous interrogation  methods.  Until recently, 

frequency standards using continuous  frequency  modulation interrogation, such as cesium beam 
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tubes  and  rubidium  gas cells, have  been analyzed in terms of the Fourier sine coefficients of the 

modulation  and  demodulation waveforms.  On the  other  hand,  the analysis of pulse-mode standards, 

such as the linear ion trap  and cesium fountain, is carried  out  in  terms of a  sensitivity  function g ( t )  

that is derived in the  time  domain by a quantum mechanical  analysis of the  atomic  interrogation 

[1][2] [3][4].  Then  the  aliasing effect  is obtained as a  function of the Fourier cosine coefficients of 

g ( t ) .  Here, we present  an  application of the sensitivity-function  methodology to a limiting  case of 

square-wave frequency modulation for passive frequency standards  interrogated by continuous FM 

and  treated  in  the  quasi-static  limit. 

The effectiveness of square-wave  modulation or  demodulation  has been  shown  in recent work to  

be  surprisingly  smaller than might  be  expected.  Venot et al. [5] (see [6] also) find only minimal (M 

1%) performance  improvement by including successively higher  numbers of optimized  harmonics  in 

the  detection waveform  for the case of white L.O. phase noise. The  surprise is that,  mathematically, 

a constant  sensitivity  can  be  approached by increasing  harmonic  content,  and a constant  (unvarying) 

sensitivity would not  cause  any aliasing at all. 

On  the  other  hand, we should  not  be  surprised to find that  the  actual limiting value of the 

aliased noise for square-wave frequency modulation  and  detection is not zero. For systems  with 

finite bandwidth,  both  the  time-varying  sensitivity of the  atomic  discriminator  and  the  transfer 

function of the  modulator  must  in fact cross zero while reversing sign. Thus,  it makes sense to 

consider a general continuous  form of the sensitivity g ( t )  that goes from 0 to a positive value and 

back to 0 during half a cycle of the  square wave, and  to  study  the limiting  behavior of the aliased 

noise as  the  graph of g ( t )  approaches  a  rectangle. For this  form, which always includes zeros, it is 

not obvious that  the aliasing effect is small. 

In  the following sections, we show  how previous analyses of continuous  FM  interrogation  can  be 

put  into  the  sensitivity-function  setting,  and we specify the  mathematical framework  used  in the 

remainder of the  paper. We investigate  the behavior of the aliasing effect  for white  and flicker phase 

noise processes in  terms of a dimensionless variance ug that measures how much g ( t )  differs from a 

constant. Working  from explicit time  dependencies for g ( t ) ,  as well as from  its Fourier coefficients, 

we calculate the zero-frequency spectral  density of aliased frequency variations for the locked local 

oscillator. For atomic frequency standards,  this provides a limit to  achievable white frequency 

noise in the locked L.O. For white L.O. phase noise we prove that  this aliased noise spectral  density 

diverges as l /ug  as ug -+ 0. We also derive the  optimal  shape of g ( t ) ,  a  sequence of parabolic  arches 

that reduces the aliasing effect from  our  nominal case by a factor of 6/7r2. The sine coefficients of 
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the corresponding  demodulation waveform agree with  those  obtained previously [5]. Nevertheless, 

the aliasing effect  for the  optimal case is only 1.5% smaller than for square-wave modulation  with 

sine-wave demodulation (r2/16), explaining why improvements to  that widely used strategy have 

proven so hard  to come by.  For  flicker phase noise, we present a form for g ( t )  for which the aliasing 

effect approaches zero with  decreasing ug. Finally, we show how to  obtain  optimized  sensitivity 

functions for arbitrary  phase noise spectra. 

2 The  sensitivity function 

2.1 Previous work 

The sensitivity  function  originated as a tool for studying  the L.O. noise aliasing effect in passive 

atomic  frequency  standards  with pulsed interrogation [l]. In  these  standards,  the  detected frequency 

error is available only at multiples of a cycle period T,. The error  signal at time nT, has  the  form 

where ( t )  is the  instantaneous normalized L.O. frequency error.  The  sensitivity  function g ( t ) ,  

which has  been derived for different interrogation  methods by quantum-mechanical  computations, 

is a periodic  function  with Fourier series 
00 

n=-m 

where v, = l/Tc. When  the  error  signal (1) is used in a frequency control  loop, the L.O. frequency 

noise near the cycle frequency uc and  its  harmonics is aliased into  the  loop  passband by the Fourier 

components of the periodic  function g ( t ) ,  causing  a  spurious  random low-frequency correction 

voltage to  be delivered to  the L.O.. This effect induces  a noise component in the controlled L.O. 

frequency inside the loop passband;  the  spectral  density of this  induced noise at Fourier frequency 

zero is given  by 

where Sio (v )  is the  spectrum of the normalized frequency of the uncontrolled L.O. This noise 

appears as an Allan deviation  component 

3 



in the  output of the controlled L.O. for 7 greater  than  the response time of the loop.  Control loop 

analyses  leading to (3) from different points of view are available in the  literature [l] [a] 171 [8] [9]. 

The present  paper  deals  with a situation in which the  L.O. frequency error y ( t )  is detected 

continuously. Let M (t)  and D (t)  be  the  synchronous  modulation  and  demodulation waveforms, 

assumed to be  periodic  with  period T,, odd  about 0, and even about T,/4. In  the  quasi-static 

approximation,  the  error  signal, linearized with  respect to small  fluctuations y ( t ) ,  is D ( t )  M ( t )  y (t) .  

Under  these  conditions, the function g ( t )  = D ( t )  M ( t )  is periodic  with  period T, = Tm/2 and even 

about 0 (and  about T,/2); naturally, we call g ( t )  the sensitivity  function for this  detection scheme. 

Figure 1 shows an  example in which M (t)  is a square wave, D ( t )  a  sine wave, and g (t)  a rectified 

sine wave. 

Passive frequency standards  with  this kind of error  signal  have  been  analyzed  in the  literature 

for different cases of M ( t )  and D (t). In all cases (unless M (t)  and D ( t )  are  both perfect square 

waves) there is an aliasing effect analogous to  the one for pulsed interrogation,  and (3) holds. These 

analyses,  after  expanding M (t)  or D ( t )  as a sine series 

calculate the aliasing effect in  terms of the sine coefficients C2n+l without  mentioning g (t)  explicitly; 

nevertheless,  formulas for its Fourier coefficients gn can  be seen in the  results, which are all of form 

(3). We summarize  three of these  analyses, giving the gn formula for each. 

Audoin et al. [lo] consider a  modulation waveform M ( t )  that  depends  on  the  applied  modulation 

and  the  atomic  response  curve, along with sine-wave demodulation D ( t )  = 2 sin (7rv,t). If M (t)  is 

expanded  as (5), then g ( t )  = 2M ( t )  sin (7rvct) has Fourier coefficients 

Venot et al. [5]  consider square-wave modulation  and  a general demodulation waveform D ( t )  

given  by (5). In  this  case, we can  assume that g ( t )  = D ( t )  for 0 5 t 5 T,; thus,  on  this  interval, 

g ( t )  has  the two orthogonal expansions 

n=l n=O 

Taking the  inner  product of both  expansions  with cos (2nnv,t), we find that 

O0 c2k+1 (2k + for all n. 
gn = ;?- (2k + - 4n2 

k=O 
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By an analysis in the frequency domain, De Marchi et  al. [ll] obtain  an aliasing result  equivalent 

to  that of Venot et  al.  They  assume square-wave modulation  and  demodulation,  but  with  a lowpass 

filter h F  applied  between them in order to represent  bandwidth  limitations of the  system. If q ( t )  

denotes  a  unit  square wave of frequency v,, their  error  signal is q( t )  J h F  ( t  - u) q (u) y (u)  du, which 

is not of form g ( t )  y ( t ) .  Nevertheless, a study of their  derivation shows that, as far  as the aliasing 

effect  is concerned,  this  error  signal is equivalent to q ( t )  [J h F  (t - u) q (u) du] y ( t ) ,  which  does  have 

the desired form. We can  regard M ( t )  as  a filtered square wave and D ( t )  as  a  square wave; again, 

(8) holds, provided that  (n/2) C2n+l (272 + 1) is interpreted  as  the  filter response HF ((2n + 1) vm). 

2.2 Present approach 

Although we shall keep the factors M (t)  and D ( t )  in mind,  it is reasonable to investigate how 

the aliasing effect depends  on  their  product g ( t ) ,  regarded as an  independent  object of study. For 

convenience we set T, = 1, and we shall  drop  the  assumption  that g (t)  is even. There is  precedent  in 

the  literature for doing so: Lemonde et al. [4] and Makdissi et al. [12] derive asymmetric  sensitivity 

functions for periodic  and  continuous  interrogation disciplines; Barillet et al. [13] allow cosine terms 

in the expansion of D ( t ) .  Also, we wish to leave open  the possibility that a dynamic  analysis  might 

lead to  a periodic,  asymmetric M (t) .  Consequently, we must allow the coefficients gn to  be  complex, 

satisfying g-n = gn. Nevertheless, all of the examples  and  optimization  solutions to follow are even 

functions.  Two  sensitivity  functions that  are  proportional  to  each  other  are equivalent for our 

purposes. 

i 

Let us place the following mathematical  conditions  on g ( t ) ,  0 5 t 5 1: 

1.  Its Fourier coefficients 

1 
gn = 1 e-Zznntg ( t )  dt 

satisfy 
M 

n=--00 

2. g (0) = 0; 

3. go = Ji 9 ( t )  d t  > 0. 

Condition 1 says that  the Fourier series (2) converges absolutely  and  uniformly;  this forces 

g (t)  to extend  to  a  continuous  function on the real line with  period  1.  Condition  2  says that  the 

modulation or demodulation waveform has to pass  continuously  through  zero, even though  the 



other might be  an ideal square wave. Because of Condition 1, g (1) = 0 also. Condition 3 is needed 

in order that g ( t )  y ( t )  be  a  reasonable  error  signal  on average; the open-loop  gain  contains go as a 

factor. 

A function  g ( t )  that fulfils these  conditions will be called an admissible sensitivity. For such a 

function, (2) and  Condition  2 gives 

90 = - Cgn. 
n f 0  

In  order to measure how much g ( t )  differs from  a constant  sensitivity, we define  its normalized 

variance vg by 

Then 

A previous study [14] used a different measure that applies to a class of sensitivity  functions that 

are even about  and  increasing  on [0, i]. 
To  make a dimensionless version of the aliasing formula (3), let us normalize it by the case of 

sine-wave modulation  and  demodulation (sine-sine detection). For this  case,  g ( t )  = sin2 (7rt) = 
(1 - cos (27rt)) (see Fig. 2),  so that go = $,  g1 = 9-1 = -7,  and  the  other gn are zero. The 1 1 

resulting aliasing formula is written 

S, (0;sin 2 ) = -Sy 1 LO (vc) 
2 

Dividing (3) by (14), we define a normalized aliasing factor by 

4 "  2 Y  SLo (nv,) 
~ = 7 ) I g n I  

' 0  n=1 st0 ( V C )  . 

It will be shown later  (Section 5) that we can always make A < 

(14) 

(15) 

1 by a  good choice of g ( t);  in  other 

words, sine-sine detection  can always be  improved upon, in principle. 

Our  purpose is to  study  the behavior of A for different types of L.O. noise. For a power-law 

noise spectrum, Sto ( v )  = h,v", we write A = A,, where 

For a = 0 (white  frequency), we have A 0  = 2v,; the aliasing factor always tends  to zero as g 

approaches a constant sensitivity.  Let us  look at  the more  interesting cases a = 2 (white  phase) 

and cx = 1 (flicker phase). 
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I 

3 White phase 

3.1 Optimal  sensitivity  function 

For white  phase noise, we show that  the aliasing factor 

has a positive minimum over all admissible g,  and we derive  the  optimal  g ( t ) .  If  A2 < ca for 

an  admissible  g ( t ) ,  then  g ( t )  is absolutely  continuous  and  has  an L2 derivative g‘ ( t ) ,  whose nth 

Fourier coefficient is i2nngn. Since the L2 norm of  g’ ( t )  is given  by 

we have 

Knowing that 0 = g (0) = g (1) = Jig’ ( t )  d t ,  we can  express go in  terms of  g’ ( t )  as follows: 

Thus,  letting f ( t )  = 4 - t ,  we can  rewrite (18) as 

” - 27r2 (A, f ) 2  
A2  119‘11 

in terms of the L2 inner  product ( f l , f 2 )  = Ji f15. The  quantity AT1 can  be maximized by making 

the  unit  vector g’/ 11g’11 point in the direction of f ;  we are allowed to do that because f ( t )  is itself 

the derivative of the admissible  sensitivity $t (1 - t ) ,  which, therefore,  has to be the  optimal choice. 

Thus,  the  optimal  sensitivity  function for white FM is a parabolic  arch,  and 

1 6 
minA2 = 

27T2 l l f 1 I 2  = 7 M 0.60793, 

which  can  be attained  with square-wave modulation  and a demodulation waveform D ( t )  consisting 

of a series of alternating positive and  negative  parabolic  arches.  This  result confirms that of Venot et 

al. [ 5 ] ,  whose optimal  demodulation coefficients C2n+l = (an + 1)-3 are  indeed the sine coefficients 

of a  parabolic-arch wave. 
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Since a  parabolic  arch looks much like a sinusoidal arch (see Fig. 2), it is interesting to  compare 

the minimal aliasing factor to  the aliasing factor for square-sine  detection.  A  straightforward 

evaluation of (18) for g ( t )  = sin (rt) gives A2 = r2 /16  z 0.61685, which is greater  than  minA2 by 

a  factor of r4/96 = 1.0147. For white  phase noise, square-sine  detection is close to being  optimal. 

The  optimal  sensitivity  can  be derived by yet another  method, which will be  used again repeat- 

edly. After substituting (11) into (17) and  setting x,  = ng,, a, = -l/n (n # 0), we have 

where we are now using the inner  product (u,  u )  = x,+, u,% and  its  norm llull = z/m for two- 

sided  complex sequences with  the  term for n = 0 omitted. For the  optimal  solution,  set x ,  = a,, 

Le., g, = -n-2  (n # 0), which is proportional  to  the  nth Fourier coefficient of t (1 - t ) ;  then 

(minAz)-' = 3 lla1I2 = x,"& n-2 = 7r2/6 as before. 

3.2 Comparison with  experiments 

The aliasing factor .rr2/16 for square-sine  detection says that  there is only a 2.1 dB improvement  in 

the aliasing effect when we go from sine-sine detection  to  square-sine  detection.  This  result  disagrees 

with  the  measurements of Deng  et al. [15] on  a  rubidium cell. They  measured C2, := ngn/go, 

averaged over ranges of n ,  by injecting  bandpass-filtered  phase noise into  the L.O. and  observing 

the aliasing effect. Their  results  correspond to a decrease in the aliasing effect of approximately  a 

factor of 10 in  amplitude. To the  authors' knowledge, this  large  discrepancy  has  not  been  explained. 

There is better  agreement  with recent measurements of Barillet  et  al. [13] on  a  cesium tube. 

They observed the aliasing effect  by injecting controlled amounts of phase noise in  the  vicinity 

of v,, 2vc,. . . , 5vc. For square-sine  detection  with  white  phase noise, they  measured gy (8s) = 
7.3 x to  calibrate  our  calculations, we choose the value of phase  spectral  density  that makes 

our  calculated value of gy (8s) agree  with the measured value. After attenuating  the noise density 

at v, by 14  dB,  they  measured 3 . 9 ~ 1 0 - ' ~ ;  our  calibrated  calculations give 3 . 7 ~ 1 0 " ' ~ .  Using the 

same noise conditions  and square-wave modulation,  they  introduce a demodulation waveform 

D ( t )  = 2 [sin (rvct) + C3 sin  (3rvct)] 

with  the  object of minimizing the aliasing effect with  respect to C3. (Square-sine detection cor- 

responds to C3 = 0.) Although the measured values of oy (8 s) and  our  calculated values show  a 
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rough  qualitative agreement for 0 2 C3 2 -0.4, the  calculated values vary  between 0.94 and  0.55 

times  the measured values. 

3.3 Approach to a rectangle 

Suppose that  the  graph of the admissible  sensitivity  function  on [0,1], which passes through  the 

points (0,O) and ( l , O ) ,  approaches a rectangle  in the sense that vg tends  to 0. Then, for white 

phase noise, the aliasing  factor A2 tends  to infinity at least as fast as l/vg. More precisely, 

for all  admissible g ( t ) ;  moreover, the  constant  in  (19) is best possible. 

To prove (19), let f (t)  = 1 - g ( t )  /go. Then 

1 
f (0) = f ( l )  = 1, 1 f ( t ) d t  = 0. 

We may  assume that A2 < 00. From (12) and (18), we have 

thus, (19) is equivalent to  

To prove (21), observe that  the continuous  function f assumes its  mean value 0 at some  point a 

in (0 , l ) .  Since f is absolutely  continuous, so is f 2 ,  implying that f 2  is the integral of its derivative 

2 f f ’ .  Then 

1 = - [f (012 - f (.I2 + f - f 1 
2 

= - L a f f ‘ + / ’ f f ‘  
La I f f ’ I  + J’ Iff’I = I f f ’ I  

0 

by Schwarz’s Inequality. This proves (21). 

We  give an example to show that (21) is not valid in general with a constant  greater  than 1 

on the right  side.  To  make Schwarz’s Inequality efficient, we try  to make I f ’  (t)l proportional to  
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I f  (t)I, while retaining  the  conditions  (20).  Let f ( t )  = be-" - d for 0 5 t 5 3, f ( t )  = f (1 - t )  for 

I < t 5 1. After solving for b and d as  functions of c such that f (0) = 1, so 112 f = 0, we find that 2 -  

This  quantity  can  be  made as close to 1 as we like  by making  c  large. The sensitivity  function g ( t )  

that corresponds to  this  example  approaches  a  rectangle  as  c --+ 00. 

4 Flicker phase 

Previous work  [14] suggested that as g ( t )  approaches a rectangle in some  reasonable way, the 

aliasing factor 

approaches a positive constant.  This is true for the  method of horizontal  shrinking  used  in [14]  for 

symmetric g ( t ) ,  in  which we split the  graph of g ( t )  down the middle,  shrink  both halves horizontally 

towards the vertical lines t = 0 and t = 1 while retaining  their  shapes,  and  bridge  the  gap by the 

constant g (l/2). 

For another  example,  taken  from [ll], let 

M (t)  = - 4 N - l  sin ((an + 1)xt) 
ll 2 n + 1  ' 

n=O 

which is a partial  sum of the sine series of a square wave q ( t )  with  period  2  and  amplitude  1. 

(In  terms of the lowpass filter referred to earlier, HF ((2n + 1) vm) = 1 if 0 5 n 5 N - 1, and 

0 otherwise.)  This  function will be called the  N-term  Gibbs  square wave (shown  in  Fig. 2 for 

N = 10).  Letting D ( t )  = q ( t )  makes g ( t )  the even  extension of M (t) .  Plots of gn as  a  function of 

n and N are given in [ll]. For  large N ,  the  summations  in (8) and (22)  can be  approximated by 

integrals that  can  be  evaluated in terms of known functions. Also, because g ( t )  = M (t)  on  [0,1] 

and ( 5 )  is an  orthogonal  expansion, ug can  be  evaluated  directly  from  (12).  (In  fact, ug = l/go - 1 

with  this  particular  scaling.) We find that ug - 2/ (lr2N) as N --+ 00, and 

lim A1 = - 28' ( 3 )  - - 0.3455, 
N+CC lr4 

where 5 ( p )  = n P .  

These findings lead to  the conjecture that  AI, like A2, has  a positive lower bound over all 

admissible g ( t) .  To show that  this  conjecture is false, we restrict  the  harmonic  content of the 
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Fourier series (2) of g ( t ) .  Assume that gn = 0 for In[ > N .  Set 5 ,  = grim, a, = -1/m, from 

(22) and (11) we obtain 

where the  summations  are over 1 5 1 7 2 1  5 N .  As before, to maximize AT1  we set II: = a,  i.e., 

gn = -I/ 1 7 2 1 ,  and  obtain go from (11).  Write LN = E,"=, n-'. Then LN = 1nN + y + 0 (1/N) as 

N t 00, where y is Euler's  constant,  and 

The  actual  sensitivity  function, 

will be called the  N-term  logarithmic  arch  because  n-l cos (2n7rt) = - In  lsin (7rt)l for 0 < 
t < 1 [16];  it is shown  in  Fig. 2 for N = 10. Although AI decreases only logarithmically  with N ,  it 

still goes  below the limiting value (23) for the  Gibbs  square wave when N 1 10. 

5 Arbitrary  phase  noise 

The previous argument generalizes easily to any L.O. phase noise spectral  density.  Let 

for In1 1 1; for simplicity, assume all sn > 0. To  minimize  (15) over admissible g (t)  whose Fourier 

coefficients gn vanish for In1 > N ,  we need only set  gn = -l/sn for 1 5 1 7 2 1  5 N ,  and  determine go 

from  (11). For a given N ,  the  optimal  sensitivity  and  minimal aliasing factor  are given  by 

N 1 - cos (2n7rt) = x sin2 (n7rt) N 

gN (t> = , 
Sn n=l Sn n=l 

Since SI = 1 we see that  (minA)N < 1; in  other words, we can always improve  on sine-sine 

detection in principle. On  the  other  hand,  other  studies  [17][18]  [5][6] have  suggested that  the 
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aliasing effect could be  reduced by suppressing  the L.O. phase noise severely at v, = 2vm before the 

atomic  resonance sees it.  In  this  situation,  the  sensitivity g ( t )  = sin2 (rt) is nearly  optimal  because 

ST' = 1 dominates  the  other s;'. This confirms another  result of Venot et al. [5]: assuming  square- 

wave modulation  and  white  phase noise with noise suppression at v,, they  compute  optimal  sine 

coefficients of the  demodulation waveform. For three-harmonic  optimization  and  complete noise 

suppression at v,, their values of C3/Cl and CS/C1 differ  by only 1% from -$ and -&, which are 

the  exact values from the expansion of sin2 (rt) as a sine series ( 5 ) .  

In a narrow  mathematical sense, of course,  there is nothing  special  about  the  term for n = 1 

in (3); for any m > 1, the  optimal  detection also improves  on detection using g (t)  = sin2 (mrt), 

which selects only the noise at frequency mv,. 

We can  distinguish  two behaviors for large N .  If s;' = 00 (e.g., sn - na with a 5 l), then 

A  can  be  made as small  as we like  by making N large,  subject  to  the  limitations of the quasi- 

static  approximation; we have  already  treated  the  borderline case a = 1. If Cs;'  < 00 (e.g., 

sn - na with a > l), then gN ( t )  converges uniformly as N -+ 00 to  an admissible  sensitivity that 

is optimal for this noise spectrum,  and  (minA)N converges to  the positive minimum (C:?, s;')- 

of the aliasing factor. For a = 2 we found that  the  optimal g ( t )  is a  parabolic  arch. For the sake 

of curiosity, we plot the  optimal  g (t)  for a = 3 in Fig. 2 (opt 3); this  function has zero slope at 

t = 0 and 1. 

1 

After  obtaining a sensitivity  function  g ( t )  that is judged  to  be  desirable, we can try  to realize 

it  as M ( t )  D ( t ) .  If one of the factors is a  square wave, then  the  other  factor is g ( t )  on [0,1]. If 

one of the  factors is a  sine wave, we can  either  express  the  other  factor as g (t)  / sin (rt) in the  time 

domain,  or  obtain  its  sine  expansion (5); in  fact,  it follows from (6) and (11) that 

k=n+l 

Here, if g ( t )  has a finite cosine series, then  the  sine series (5) is also finite.  The  results  can  be 

unattractive, however; see Fig. 3, which  is the result of trying  to  obtain a logarithmic-arch  sensitivity 

(Fig. 2) in this way. 

6 Conclusions 

Using the  quasi-static  theory, we have  shown how to exploit the  sensitivity  function  as  a  tool 

for studying  the aliasing effect that arises when an  atomic  resonator is probed  by a frequency- 
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modulated  signal in a control  loop,  and we have seen that simplicity  and insight can  be  gained by 

direct use of the sensitivity  function in analyses.  In  particular, we have quantitatively  examined 

the  attractive  and  almost obvious idea that  as a constant  interrogation  sensitivity is approached, 

the aliased L.O. noise must go away. This  idea  turns  out  not  to  be  true  because  the  sensitivity 

must  actually  be zero at some point.  In  fact, a sensitivity that is almost  constant  has  little  time 

to get down to zero, and  thereby  tends to excite high-frequency noise components.  This  problem 

is especially severe for white  phase noise: the aliased noise has  an  absolute  minimum  and grows 

as  the  reciprocal of the normalized  sensitivity variance as  the  sensitivity  approaches a constant. 

Even for  flicker phase noise, the minimal aliased noise tends  to zero only like 1/ log N ,  where N 

is the maximum degree of the cosine components  of the sensitivity  function;  thus,  in  a  practical 

sense, the aliased noise cannot  be  made  arbitrarily  small. Nevertheless, for a known  phase noise 

spectrum,  the  sensitivity  function  can  in  principle  be  tailored  to achieve the least possible aliased 

noise for a prescribed N .  Whether  this is accomplished by tailoring the  modulation waveform, the 

demodulation waveform, or both is a matter of practical  design. 
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Figure 1: Square wave modulation M (t)  and  sine wave demodulation D ( t ) ,  both  with  period T,, 

combine to give a rectified sine-wave sensitivity  function g (t)  with  period T, = Tm/2. 
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Figure 2: A collection of sensitivity  functions,  normalized to have  mean value go = 1. The functions 

labeled  opt a! are  optimized for vcu”2 phase noise. The logarithmic  arch  (opt 1) is a  constant plus 

10 cosine terms;  the  Gibbs  square wave  is a  sum of 10 sine  terms. 
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Figure 3: This is the  mod./demod. waveform that you have to use to  turn a sine-wave demod./mod. 

into a 10-term  logarithmic-arch  sensitivity. 
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